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1. Introduction

Often, database managers must decide which non-sensitive data to
release. This is referred to as data sanitization or data downgrading.
Issues surrounding downgrading are of particular importance to net-
work architectures which utilize a multiple single level [14]approach for
keeping sensitive data away from the generic user. In a distributed envi-
ronment, data may be distributed among di�erent data sites (e.g., [22]).
Therefore, before data is downgraded, database managers must take into
account other data that users may have access to.

Let us call the authorized users who either manage the entire database
(e.g., database managers), or who are allowed access to the entirety of
the data High, and the generic user, for whom access is restricted Low.
Of course we are tacitly assuming that there are two types of data: low
data which is available to all, and sensitive data to which only High
users are allowed access. Thus, High data (High's data) may have both
sensitive and non-sensitive components. High's concern is to keep the
sensitive information away from Low. Therefore, High is allowed to
downgrade the non-sensitive parts to Low.

For information sharing needs, High decides which data to release to
Low. Obviously, High will not release sensitive data. However, database
inference occurs when Low is able to infer the sensitive information from
the data that is released. To prevent database inference, non-sensitive
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data which is related to sensitive data must be examined and perhaps
modi�ed, thus requiring further data sanitization. The problem of pre-
venting database inference in a stand-alone database is quite challenging
and has recently been under intensive study from diverse aspects (e.g., [2]
[3][5][6][7][8][9][11][13][15][16][17][18][19][29][30]). Database inference in
distributed databases is an area in which very little work has been done.
In [11], the authors showed that sensitive information can be revealed
if users link information from several databases in a deterministic man-
ner. However, the deterministic approach does not concern itself with
the equally important problem of probabilistic relationships embedded
in the data. We analyze the inference problem under a probabilistic

framework.
Let us consider the following scenario which we will use throughout

the paper. Given a database D consisting of categorical attributes, the
most common technique for mitigating inference is that of modifying
the non-sensitive data (i.e., values of attributes) in the database. How-
ever, even with appropriate data modi�cation, sensitive data can still
be compromised when data from other databases is incorporated. For
instance, an AIDS diagnosis is often considered sensitive and is not dis-
closed. Given a second database containing information related to drug
abuse, however, one may discover from the two databases that drug
abusers' intravenous injections may cause these individuals to contract
AIDS. Therefore, knowing a patient's history of drug injection could
allow one to infer that the patient has a higher chance of contracting
AIDS than does the general population, even if the diagnosis has not
been revealed. Information about patients' drug abuse should therefore
be treated as sensitive. As another example, the occurrence of non-
Hodgkin lymphomas (NHL) is higher in AIDS patients than it is in the
general population. Hence, the diagnosis of NHL should also be treated
as sensitive, since there is a high correlation between AIDS and NHL.
On the other hand, while, an AIDS patient may show signs of mental
depression, depression is a common symptom of many diseases, such as
low thyroid function. Thus, the symptom of mental depression may not
be indicative of an AIDS diagnosis. Of concern, however, is that fact
that, in a distributed environment, Low may obtain additional attribute
data as discussed above which may allow Low to infer sensitive data|in
this case, a diagnosis of AIDS.

2. Conceptual Model

We proposed a stand-alone model, the Rational Downgrader [20], for
downgrading (sanitization) using inferential analysis. In a distributed
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environment, the conceptual model of the Rational Downgrader must
be modi�ed to include \knowledge" from both external data items and
their rules.

Because external data items and their rules were not in the original
model, the Rational Downgrader is composed of three components: the
GUARD, the Decision Maker, and the Parsimonious Downgrader (or
Filter). Initially, High inputs its candidate for the data that it would
like to release to Low. The Decision Maker generates rules from the
available data set, and uses the external data items and their associated
rules, to form its output rules. The GUARD determines whether there
is inference, and if it is \excessive" based on the Decision Maker's rules.
If the inference is excessive, then the Parsimonious Downgrader will im-
plement a protection plan to lessen the inference (i.e., decides to modify
by deleting certain data from the database). The inference mechanism
is based on a decision theoretical framework (e.g., [10][21][23][27][28]).
It is the Bayesian network framework that will be used for our inference
analysis in this paper. The output of the Rational Downgrader is the
database to be released to Low. Our goal is to make modi�cations as
parsimoniously as possible and thus avoid imposing unnecessary changes
which lessen functionality.

A Bayesian network describes the probabilistic dependency relation-
ships among the attributes of a database. A Bayesian network B may
be generated from empirical data or can be constructed from a priori

knowledge.
In a distributed system, it is misleading to evaluate downgrading in

one database only. Publicly released data from one database may cause
the inference of sensitive data in another database. If to-be-released
data causes additional inference concerns due to another database, the
Parsimonious Downgrader will incorporate the new requirements into its
protection plan. As a result, only a mutually agreed upon data set will
be released.

3. Database Inference

We consider the case for which sensitive data is associated with one
particular attribute. In a medical database, AIDS diagnoses are the sen-
sitive information. We use High database and Low database to indicate,
respectively, the portion of a database viewed by a database manager
(the High user) and a generic (Low) user. We are interested in study-
ing probabilistic inuences on the sensitive information from attributes
that are related to the medical diagnosis only. (See, e.g., [1][3]) for
disclosure protection of background attributes (e.g., age, address).) A
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sample of those relevant attributes is given in Table 1. Table 1 is the
medical database for AIDS diagnoses which contains 20 data records
(i.e., patients), which are uniquely identi�ed by their key, and four at-
tributes (excluding the key) (i.e., \hepatitis," \depression," \AIDS" and
\transfusion") where each attribute has two values: a `y' indicating the
occurrence of the (diagnosis) result and an `n' otherwise. In addition,
Table 1 shows the High view (denoted here as DH) in our discussion.
The diagnosis of one disease (e.g., \AIDS") often causes the occurrence
of another physical disorder (e.g., \mental depression"). Consequently,
knowing the diagnosis of a physical disorder may lead to the inference
of sensitive information (i.e., AIDS) about a patient. Thus, to protect
sensitive information about one disease may require the protection of
other probabilistically-related records. In this paper, we use a Bayesian
network representation to describe the probabilistic relationship. A cor-
responding Bayesian network representation is given in Figure 1H1 (see
[10][21]for details on how to construct a Bayesian network), which shows
that \AIDS" may a�ect the consequence of both \hepatitis" and \mental
depression" and a cause of \AIDS" is a (blood) transfusion.2

 

  

  hepatitis depression

AIDStransfusion

Figure 1H. B-net of the High.

transfusion
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Figure 1L. B-net of the Low.

Table 2 shows the database after being initially downgraded (denoted
here as DL). Table 2 is what High would input into the Rational Down-
grader, a patient is identi�ed by its key. The threat with which we are
concerned is that of Low inferring sensitive relations about the ith data
item (or record) in the database. The dashes represent data that is con-
sidered sensitive and, thus, is not downgraded. Note that Table 2 is not
in the form in which it will be released; it has not yet undergone the
procedure that determines whether excessive inference may exist.

A target attribute T is an attribute that has dashes (meaning missing)
in it (from Low's viewpoint). Thus, T represents sensitive information.
We wish to lessen any inference that Low may attempt to draw about
the target node. Since data is not completely revealed, the correspond-
ing Bayesian network structure3 for DL di�ers from that of DH and is
shown in Figure 1L. The challenge for Low who is attempting to discern
sensitive information is to restore the missing information in Table 2.
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Note that Table 2 still contains the \AIDS" attribute, even though the
values are all missing. This is because we take \paranoid" view that Low
knows what sensitive attribute High is concerned with, and because, in
general, sensitive information may be distributed across many attributes
and all the values may not be missing.

Initial downgrading may not be su�cient to protect the sensitive
data. Again, we take the \paranoid" view that the Low obtains the
prior knowledge (from previous studies, for example) about the depen-
dency relationship between AIDS and the three attributes \mental de-
pression," \hepatitis," and \transfusion." (The dependency relationship
is described in Figure 1H.) Certainly, it is not a surprise that Low could
have the \prior" information it desires concerning an important medical
condition such as AIDS. With information concerning the dependency,
together with data in the Low database of Table 2, Low may be able
to restore the hidden sensitive data. A sample restored Low database is
shown in Table 3.

Compared with the original values in Table 1, the restored values of
Table 3 di�er in just four places. The probability of making a correct
determination is 16=20 = 0:8. This is unacceptable. The threat of
potential restoration highlights the inadequacy of initial downgrading.
We shall mitigate the inference by not downgrading certain non-sensitive
information that can lead to probabilistic inferences about the sensitive
information([2]).

4. Distributed Databases

In the real world, there may be several databases ([22]) that have an
impact on the sensitive information contained in the original downgraded
database. The inference problem, therefore, should take into account the
impact of having di�erent databases.

These multiple databases may have exactly the same structure and/or
they may have overlapping content. The possible interactions between
two databases (in the form of relational tables, with schemes R1(a1; :::ak),
and R2(b1; :::; bl) ) are the following. R2 augments R1 with data records,

R2 augments R1 with di�erent attributes, or a combination.

What we consider here is when two databases are in di�erent contexts
(or, applications), but have attributes which overlap (i.e., the third type
of interaction). Also, we assume that data records of the two databases
come from the same sample population, but the attribute values of some
objects may be unknown. We shall use the structure of a Bayesian
network and non-sensitive micro-data in our discussion.
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Data transferred from the second database may or may not have di-
rect impact on the sensitive information of the �rst database. High will
integrate some, but not all, publicly released information from di�erent
databases that may cause the disclosure of sensitive data. Combinations
of all data may render inference analysis an impossible task due to high
volumes of data. We shall analyze the impact based on network depen-
dency properties ([21]) and our practical sanitization policies with the
following three databases.

Table 4 shows the diagnosis of non-Hodgkin lymphomas (NHL) dis-
ease | a NHL patient is highly likely to be a AIDS patient. Thus,
data in Table 4 cannot be released4 if the database manager of the
NHL database also agrees with the sanitization/downgrading principle
that AIDS data must be kept private. Based on a Bayesian network
model of Table 5, low thyroid function causes mental depression, which
in turn causes high blood pressure. For a mentally depressed patient,
information concerning the patient's low thyroid function would have a
negative impact on a possible AIDS diagnosis. The degree of impact
depends on the correlation between AIDS and mental depression. It
can be tested with available data. However, knowing the state of men-
tal depression would block the impact of information concerning blood
pressure. Table 6 is an database including information about illegal drug
use, which shows the frequency with which an illegal drug user either
takes intravenous injections or smokes. Data indicates an individual
who injects illegal drugs is likely to have hepatitis. The relationship
between AIDS and drug abuse is not shown in Table 6. However, for
an intravenous drug abuser, intravenous injection is basically a form of
blood transfusion.5 Thus, the probability that an illegal intravenous drug
abuser is also an AIDS patient is high. Table 7 shows the combination
of the original High data with records of illegal intravenous drug abusers
and records of the thyroid function, where the \*" denotes attribute
values that are unknown because data records of these databases are
not completely overlapped.6 (Here, the assumption is that the database
manager of the AIDS database is able to identify and select patients
from the other two databases.) The dependency relationship between
attributes of the combined database is given by the Bayesian network
�BH of Figure 2. Note that Figure 2 resulted from composing depen-
dency relationships derived from these three databases, together with
the knowledge about the relationship between intravenous injection and
blood transfusion, and is not generated from combined data.7 In Figure
2, the probabilistic dependency of the inverted fork (e.g., the child node
\hepatitis" and parent nodes \injection" and \AIDS") is described by
the or-ing operation (i.e., either \AIDS" or \injection" causes \hepati-
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Figure 2. The combined Bayesian network �BH .

tis") as Pr(hepatitis=yjinjection=y,AIDS=y) =
1� Pr(hepatitis=njinjection=y)� Pr(hepatitis=njAIDS=y), where
Pr(hepatitis=njinjection=y) and Pr(hepatitis=njAIDS=y) are obtained
respectively from the released data of the drug abuse and the AIDS
databases. The probabilistic dependency between \depression," \Thy-
roid" and \AIDS" will also follow the or-ing relationship. The probabilis-
tic information between \depression" and \blood pressure" will remain
unchanged. The relationship between \injection" and \transfusion" is of
the form is a. It is known that the generation of a reliable complex net-
work model, in general, demands large volumes of data. Here, we assume
that the dependency relationship derived from each individual database
is preserved in the combined database. For our current example, this
assumption (referred to as dependency inheritance under combination)
seems to be valid. It is useful in handling the combination of multiple
large databases, yet its validity has not been formally proved.

5. Information Reduction

Recall that we showed the inadequacy of initial downgrading, because
in our example 80% of the sensitive data was restored. The inference
problem worsens if Low gleans information that is causally correlated
to sensitive data from other publicly-released databases. This result
suggests that High must adopt strategies for mitigating the inference
problem based on data of the combined database. Therefore, since cer-
tain non-sensitive information can lead to probabilistic inferences about
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the sensitive information, we approach the problem of lessening inference
by not downgrading all of the distributed non-sensitive information.

We modify non-sensitive data by \blocking," i.e., replacing an at-
tribute value with a \?," indicating no knowledge about the attribute
value.8 Given a database D, we let Dm denote D after at least one of its
non-sensitive entries has been blocked. Instead of sending DL to Low,
High blocks some of the non-sensitive information, and sends Dm

L
to

Low.
Shannon mathematically formalized the idea of secrecy ([25]) in cryp-

tography. We use the similar de�nition of perfect noninference ([20]) for
database inference:
DEF: If the a priori probability distribution of sensitive High data does
not change in the presence of Low data, then we have perfect noninfer-
ence.

The ideal downgrading policy for distributed databases is one that
ensures perfect noninference. The condition of perfect noninference is
unlikely to be achieved in practice because of performance issues. Our
pragmatic policy of lessening inference states that modi�cation of non-
sensitive information should lessen the inference of sensitive information,
while, at the same time, minimizing the loss of functionality.

For a given database, we measure the e�ect of modi�cation, � , based
on the probabilistic term Pr(DjB), which describes the sample proba-
bility, given the probabilistic dependency representation B. In essence,
� is a measure of the loss of functionality of a downgraded database. �
is a metric of the Low view and is measured by High.

�
def
=

j logPr(DLjBL)� logPr(Dm
L
jBL)j

j logPr(DLjBL)j
;

where Pr(Dm

L
jBL) is computed by averaging over instantiations of the

modi�ed values. We evaluate the AIDS database only because we may
not have control over other databases. The tolerance � provides a margin
within which the information protection strategies operate. Thus, we
often associate an upper bound U to � , so that � � U . � measures
the percentage of change in a sample probability. � can be viewed as a
sensitivity metric which estimates the rate of change in the output of a
model with respect to changes in model inputs ([12]). Our emphasis is on
the magnitude of the change in probability. The log-scale measure (base
10) is used in this criterion to reect the fact that the sample probability
is a small number as a result of multiplication of the probabilities of
each individual data record. Therefore a logarithmic approach somewhat
normalizes the probabilities.
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What criterion is used for High to select non-sensitive attribute values
for modi�cation (blocking)? Such a selection criterion is not unique.
We present two selection criteria that are based on a Bayesian network
framework.
SC(1) maximum di�erence:

Intuitively, attribute values which maximally change the probability
of target values, T = ti, in terms of the probabilistic model �BH (as
shown in Figure 2), should be selected. (The set of attribute values is
associated with non-sensitive information, or, in the current example, the
non-target attribute.) Since BH best interprets the data DH from which
it is derived and since the quality of modi�ed database is expected to
deteriorate, we want to select the set of attribute values that maximally
decrease Pr(DH j �BH). This selection criterion is based on:

V1
def
= (logPr(Dm

H j �BH)� logPr(DH j �BH) ); (1)

For a given set of attribute values, N , (ranging from 0 to the number
of all available attribute values except sensitive data,) to be modi�ed,
Pr(Dm

H
j � BH) is the average of all possible instantiation of this set of

values. We use averaging because the value of N in our experiment is
small. In case of large N , the value for modi�cation (i.e., \?") may
be viewed as a new symbol because instantiation could induce large
variation when computing the sample probability and also be very time
consuming. Note that we discard those values of
Pr(Dm

H
j � BH) that are greater than Pr(DH j � BH). We do not think

that situation will arise due to our (unproven) observation that modi�-
cation results in decreasing the likelihood measure. We shall show the
result of modi�cation based on this criterion after we present the second
selection criterion.
SC(2) non-informative state: We do not discuss this method due to pale
limits. However, we will consider it in future work.

As discussed, � lets us measure how the functionality of the database
for the Low user, after blocking modi�cations, has changed with respect
to Low. With the de�nitions of SC(1) in mind, our optimization goal is
to Maximize V1, while keeping � � U , if V1 is chosen.

For modi�cation, our approach is to evaluate attribute values of the
AIDS database and analyze the potential impact from combined data.
Let N denote the total number of non-targeted attribute values to be
modi�ed. Assume that N = 4, U = 5%. Now we use the selection
criterion SC(1) for our example. Consider the original Low database of
Table 2. The modi�ed Low database set is given in Table 8 by using
SC(1). The choice that maximizes V1 is that of blocking the \hepatitis"
value for data item three, the \depression" value for data item four, and
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items three and eight from\transfusion." Modi�cation is restricted to
attribute values of the original Low database. From Figure 2, it can be
seen that inference occurs if Low obtains information about injection.
This information can be used to restore the modi�ed values of \trans-
fusion," if the relationship between blood transfusion and injection is
known a priori. This result will render sanitization a failure.

To remedy this, we consider two cases: that of downgrading in a
cooperative environment, and in a non-cooperative environment. In a co-
operative environment, an e�ective approach is to mutually examine the
data sets to be released. In our example, the to-be-released data from
the AIDS site is sent to the drug abuse site for examination. (Of course,
one party needs to initiate the move.) Based on the received data, the
drug abuse database manager makes modi�cations to its own data in
order to ensure the safety of those values that have been modi�ed from
the AIDS database. The result is then sent back to the AIDS database.
In our example, the modi�ed combined database is given in Table 9,
where values of \injection" are replaced by \?" in the third and the
eighth data records, because \injection" causally a�ects \transfusion"
as described in Figure 2. Note that since \hepatitis" is also causally cor-
related with \injection", modi�cation of \injection" in the third record
also minimizes restoration of a \?" with respect to \hepatitis" of the
same record. Attributes that are causally related to \depression" are
\thyroid" and \blood pressure." Since both values of \thyroid" and
\blood pressure" of the fourth record are unknown, no further modi�-
cation is needed. Table 9 is the downgraded Low database. (One may
choose to replace symbols \-", \?" and \*" with a blank space and
the outcome of the replacement is the Low database of Table 10.) Of
course, in a non-cooperative environment, if the drug abuse database
manager has already released his or her data, the manager of the AIDS
database may take the defensive measure of increasing N . Such modi�-
cation will, of course, occur at the expense of lowering the performance
of the released database.

We do not impose a de�nite limit on the amount of data to be mod-
i�ed. The rule of thumb is that the process of modi�cation stops when
the modi�ed database can no longer support the Bayesian network struc-
ture of the original database. (See also ([4]) for the estimation of lower
bound.) The change usually undermines legitimate usage of a database.

6. Conclusion

The database inference problem with respect to distributed databases
is essentially a new research area. In this paper, we analyzed the infer-
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ence problem arising from distributed databases and we presented our
approach which is based on the framework of Bayesian networks.

Notes

1. Figure 1H is a Bayesian Network for High BH . An attribute is denoted by a node. An
arrow indicates the probabilistic dependency between two attributes. A double circle denotes
that the attribute is sensitive.

2. Our sample database is more representative of data taken at the beginning of the
AIDS epidemic, rather than today.

3. There are many ways to construct a Bayesian net. Figures 1H and Figure 1L are
constructed as in ([2]) by using a greedy model search.

4. The AIDS and the NHL databases can certainly exchange data through a special
channel. But, again, the NHL database may not be released to Low and it is not considered
part of the distributed data.

5. Clearly, \drug injection" is not identi�ed with blood transfusion in either database.
Nonetheless, it is not a secret that intravenous injection of a drug involves the drawing of
blood and drug abusers often share needles.

6. The position of a data item in either thyroid or drug database (the 1st number) and
its corresponding position in the combined table (the second number) are as follows:
thyroid: 1-1, 2-2 3-3 4-6 5-7 7-9 9-11 11-13 12-14 13-15 15-17 17-19 18-20
drug: 1-1 3-2 4-3 6-6 8-8 9-10 12-12 13-13 17-17 18-18 19-19 20-20

7. If the combined network is generated from the combined data, the unknown mark \*"
can be treated as a new value.

8. We do not use perturbation (i.e., replacing an attribute value with another di�erent
value), which introduces erroneous data, because of the negative performance side e�ects.

References

[1] Bethlehem, J. Keller, W. & Pannekoek, J. (1990) \Disclosure Control of Micro-
data," J. of the American Statistical Association, Vol. 85, pp. 38-45.

[2] Chang, L. & Moskowitz, I. S. (1998) \Bayesian Methods Applied to the Database
Inference Problem," Database Security XII (ed. S. Jajodia), Kluwer, IFIP
WG11.3, Greece, pp. 237-251.

[3] Chang, L & Moskowitz, I. S. (2000) \An Integrated Framework for Database In-
ference and Privacy Protection," Data And Applications Security, (eds. Thurais-
ingham, van de Riet, Dittrich & Tari), Kluwer, IFIP WG11.3, The Netherlands,
pp. 161-172.

[4] Clifton, C. (1999) \Protecting Against Data Mining through Samples," Advances
in Database And Information Systems Security, (eds. Atluri & Hale), Kluwer,
IFIP WG 11.3, pp. 193-207.

[5] Cox, L. (1987) \A Constructive Procedure for Unbiased Controlled Rounding,"
J. of the American Statistical Association, 82, pp. 520-524.

[6] Denning, D. (1980) \Secure Statistical Database with Random Sample Queries,"
ACM Transaction on Database Systems, 5(3), pp. 291-315.

[7] Dobra, A. & Fienberg, S.E. (2000). "Bounds for cell entries in contingency tables
given marginal totals and decomposable graphs," Proc. NAS/97/22, 11885-11892.

[8] Duncan, G. & Roehrig (2002) \Cyclic Perturbation: Protecting Con�dentiality
in Tabular Data," (manuscript).



12

[9] Hale, J. & Shenoi, S. (1996) "Analyzing FD Inference in Relational Databases",
Data and Knowledge Engineering Journal, vol. 18, pp. 167-183.

[10] Heckerman, D. (1996) \Bayesian Networks for Knowledge Discovery," Advances
in Knowledge Discovery and Data Mining, AAAI Press/MIT Press, pp. 273-305.

[11] Hinke, T., Delugach, H. & Wolf, R. (1997) \Protecting Databases from Inference
Attack," Computers & Security, Vol. 16, No. 8, pp. 687-708.

[12] Isukapalli, S. (1999) \Uncertainty Analysis of Transport-Transformation Mod-
els," Ph.D. dissertation, Dept. of CCI, State Univ. of New Jersey at Rutgers.

[13] Johnsten, T. & Raghavan, V. (1999) \Impact of Decision-Region Based Classi-
�cation Mining Algorithms on Database Security," IFIP WG 11.3, pp. 177-191.

[14] Kang, M.H., Froscher, J.N., & I.S. Moskowitz (1997) \An Architecture for Mul-
tilevel Secure Interoperability," Proc. 13th ACSAC Conference, San Diego, CA.

[15] Lin, T. Y. (1993) \Rough Patterns in Data-Rough Sets and Intrusion Detection
Systems," J. of Foundation of Computer Science and Decision Support, Vol. 18,
No. 3-4, pp. 225-241.

[16] Marks, D. (1996) \Inference in MLS Database Systems," IEEE Trans. Knowledge
and Data Engineering, Vol 8, No. 1, pp. 46-55.

[17] Matlo�, N. (1988) \Inference Control Via Query Restriction Vs. Data Modi�ca-
tion: A Perspective," Database Security: Status and Prospects, IFIP pp. 159-166.

[18] Morgenstern, M. (1988) \Controlling Logical Inference in Multilevel Database
Systems," Proc. IEEE Symp. on Security and Privacy, pp. 245-255.

[19] Moskowitz, I. S. & Chang, L. (2000) "An Entropy-Based Framework for Database
Inference," LNCS 1768 (ed. A. P�tzmann), IH'99, Springer, pp. 405-418.

[20] Moskowitz, I. S. & Chang, L. (2000) \A Computational Intelligence Approach
to the Database Inference Problem," Advances in Intelligent Systems:Theory and

Applications (ed. M. Mohammadian) IOS Press, pp. 377-387.

[21] Pearl, J. (2000) Causality, Cambridge.

[22] Prodromidis, A., Chan, P. & Stolfo, S. (2000) \Meta-learning in distributed data
mining systems: Issues and approaches," Advances in Distributed and Parallel
Knowledge Discovery, (eds.) Kargupta, H. and Chan, P., Chapter 3, AAAI/MIT.

[23] Quinlan, R. (1992) C4.5, Morgan Kaufmann.

[24] Saygin, Y., Verykios, V. & Clifton, C. (2001) \Using Unknowns to Prevent Dis-
covery of Association Rules." SIGMOD Record 30(4): pp. 45-54.

[25] Shannon, C. (1949) \Communication Theory of Secrecy Systems," Bell Systems

Technical Journal, Vol. 28, Oct. 1949, pp. 656-715.

[26] Spiegelhalter, D. & Lauritzen, S. (1990) \Sequential updating of conditional
probabilities on directed graphical structures," Networks, 20, pp. 579-605.

[27] Spirtes, P., Glymour, C. and Scheines, R. (1993) Causation, Prediction, and

Search. Springer-Verlag, NY.

[28] Thuraisingham, B. (1998) Data Mining: Technologies, Tools and Trends, CRC.

[29] Yip, R. & Levitt, K. \The Design and Implementation of a Data Level Database
Inference Detection System," Database Security XII pp. 253-266.

[30] Zayatz, L. & Rowland, S. (1999) \Disclosure Limitation for American
Fact�nder," Census Bureau report (manuscript).



A Study of Inference Problems in Distributed Databases6 13

A short-handed notation is used for each attribute of each table.
H: hepatitis; D: depression; A: AIDS; T: blood transfusion; N: NHL cancer;
P: blood pressure; Y: low thyroid; I: intravenous injection; S: smoke

Table 1. DH | sample medical records (the 1st databse)
(The superscript i of the key refers to data records that come from the ith database.
In this table, the superscript i is 1.)

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H n y y y n n y y y n n y n y n y n y n y

D n y y y y n n n y n y n n y y n y y y n

A n n y y n n n y y n y n n y n n n y n n

T n n y n n n n y n n y n n n n n n y n y

Table 2. DL | medical records of Low database

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H n y y y n n y y y n n y n y n y n y n y

D n y y y y n n n y n y n n y y n y y y n

A - - - - - - - - - - - - - - - - - - - -

T n n y n n n n y n n y n n n n n n y n y

Table 3. a restored Low database

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H n y y y n n y y y n n y n y n y n y n y

D n y y y y n n n y n y n n y y n y y y n

A n n y N n n n y N n y n n N n n n y n Y

T n n y n n n n y n n y n n n n n n y n y

Table 4. NHL cancer database (the 2nd database)

key2 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

N n n y y y n y y n y y y n n y y n y n

A n n y y n n y y y y y y n y y y n y n

Table 5. thyroid database (the 3rd database)

key3 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P n y y y n n n n n y y n y y n n y y

D n y y n n y y y y y n y y y y n y n

Y n y n n n y n y n y n y y n y n y n
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Table 6. drug abuse database (the 4th database)

key4 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
I n y n y y n y y n y y n n y y y n y n y
S y n y y y y y y y n y y y y y n y y y n
H n y y y y n y y n y y y n y y y n y n y

Table 7. combined High database

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H n y y y n n y y y n n y n y n y n y n y
D n y y y y n n n y n y n n y y n y y y n
A n n y y n n n y y n y n n y n n n y n n
T n n y n n n n y n n y n n n n n n y n y

I4 n n y * * n * y * n y n n * * * n y n y

S4 y y y * * y * y * y n y y * * * y y y n

P 3 n y y * * y n * n * n * y n y * n * y y

Y 3 n y n * * n n * n * n * n y y * y * y n

Table 8. Dm
L||{modi�ed medical records

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
H n y ? y n n y y y n n y n y n y n y n y
D n y y ? y n n n y n y n n y y n y y y n
A - - - - - - - - - - - - - - - - - - - -
T n n ? n n n n ? n n y n n n n n n y n y

Table 9. modi�ed combined Low database

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H n y ? y n n y y y n n y n y n y n y n y
D n y y ? y n n n y n y n n y y n y y y n
A - - - - - - - - - - - - - - - - - - - -
T n n ? n n n n ? n n y n n n n n n y n y

I4 n n ? * * n * ? * n y n n * * * n y n y

S4 y y y * * y * y * y n y y * * * y y y n

P 3 n y y * * y n * n * n * y n y * n * y y

Y 3 n y n * * n n * n * n * n y y * y * y n

Table 10. (alternative) modi�ed combined Low database

key1 ! 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

H n y y n n y y y n n y n y n y n y n y
D n y y y n n n y n y n n y y n y y y n
A

T n n n n n n n n y n n n n n n y n y

I4 n n n n y n n n y n y

S4 y y y y y y n y y y y y n

P 3 n y y y n n n y n y n y y

Y 3 n y n n n n n n y y y y n




